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Tensile strength of discontinuous 
fibre-reinforced composites 
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Central Research and Development Experimental Station, E.I. du Pont de Nemours, Inc., 
Wilmington, Delaware 19898, USA 

A stochastic Monte-Carlo approach, based on Eyring's chemical activation rate theory, is used 
to study the factors controlling the tensile strength of discontinuous fibre-reinforced com- 
posites. The model explicitly takes into account the local distribution of stress near fibre ends. 
Both the fibre and the matrix are allowed to break during fracture of the composite. The 
stress-strain curves and the modes of failure of the composite are found to be strongly depen- 
dent on the volume fraction and aspect ratio of the fibres. The importance of adhesion at the 
fibre/matrix interface is also studied. The results are compared with available experimental 
data. 

1. In troduc t ion  
Composites made by embedding stiff fibres in soft 
matrices can have outstanding mechanical properties, 
encompassing the advantages of both the fibre and the 
matrix, i.e. high strength and high elongation at break. 
For better processability, these composite materials 
often incorporate short discontinuous fibres which, 
ideally, are also oriented in the direction of applied 
load in order to take full advantage of the reinforcing 
properties of the fibres. 

Several theoretical, as well as empirical, "combining 
rules" have been developed for predicting the depen- 
dence of the composite stiffness on the concentration 
and the known mechanical properties of the individ- 
ual components (for a review, [1]). Similar combining 
rules have been developed in theoretical studies of 
composite strength [2-4]. All the above approaches, 
however, are usually based on the so-called shear 
analysis and therefore neglect the stressed state of 
the fibre ends. That neglect is probably of secondary 
importance in calculations of the composite stiffness 
at small deformations. However, in the case of large 
deformations approaching failure, the stress concen- 
tration near fibre ends becomes of crucial importance. 
As a result, analytical equations for describing com- 
posite strength are far from being as accurate and 
rigorous as those introduced for describing composite 
stiffness. For that reason, finite element analyses 
involving a detailed calculation of internal stresses 
have also been used [5]. These studies, however, were 
restricted to the case of particulate composites and 
they also neglected the effects of particle-particle 
interactions. In addition, a very simplified criterion 
was used for predicting composite failure. 

In a recent series of publications [6, 7], we have 
introduced a finite difference type of approach for the 
study of the factors controlling the stiffness of fibre- 
reinforced composites. The approach is especially 
well-suited for application to composite strength 

because it explicitly takes into account all local stress 
concentration effects. In the model, the composite 
material is represented by a three-dimensional lattice 
of bonds having different elastic constants for the fibre 
and for the matrix. For a given value of the external 
strain, the lattice sites are relaxed towards mechanical 
equilibrium with their neighbours by a systematic 
sequence of operations which steadily reduce the 
net residual force acting on each site. That model is 
extended here to a study of composite strength by use 
of a stochastic approach previously introduced for 
describing polymer failure [8-10]. Within the frame- 
work of that approach, the lattice bonds are broken 
according to their local stress with the help of a 
Monte-Carlo lottery based on Eyring's chemical acti- 
vation rate theory [11]. Bonds belonging to both the 
fibre and the matrix are allowed to break during frac- 
ture of the composite. 

The model described above is used to study the 
dependence of composite strength on the volume frac- 
tion and aspect ratio of the fibres. The shape of the 
stress-strain curves and the mode of composite failure 
are found to be strongly dependent on fibre charac- 
teristics. The importance of adhesion at the fibre- 
matrix interface is also discussed. 

2. The model 
The composite is represented by a three-dimensional 
(x-y-z) lattice of sites which are linked by bonds 
having different elastic constants for the matrix and 
the fibre (for more details, see [6, 7]). The lattice is of 
the simple cubic type and typically comprises 200 
nodes along the y-axis and 35 nodes in the transverse 
x- and z-directions. The Young and shear moduli of 
the matrix and of the fibre are denoted by (Era, Gm) 

and (El, Gr), respectively. The fibres are oriented along 
the y-axis and have an aspect ratio lid where l and d 
are length and diameter, respectively. In most simu- 
lations, d is set equal to 3 to 5 lattice units [6, 7]. 
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Figure 1 Stress-strain curves for a fibre-reinforced composi te  at different values of  fibre volume fraction, %. (a) l/d = l with d = 7 lattice 
units; (b): lid = 20 with d = 1 lattice unit. The dashed lines indicate the limiting cases of  pure  fibre (% = 1) and pure  matr ix  (% = 0). 

The lattice described above is strained along the 
y-axis at a constant rate of  deformation and tempera- 
ture, T. In the course of  that process, bonds are 
broken according to the kinetic theory of fracture [11], 
i.e. at a rate 

v = ~ exp [ ( -  U + fl~)/kT] (1) 

in which U is the activation energy, z the thermal 
vibration frequency ( ~  1012 sec -1 ) and fl an activation 
volume. In Equation 1, a is the local stress 

a = Ke (2) 

where K is the elastic constant for the bond whereas e 
is its local strain. That bond breaking process is executed 
with the help of  a Monte-Carlo process (for more 
details, see [8-10]) which, at regular time intervals, 
also relaxes the lattice to its minimum energy con- 
figuration. That  relaxation procedure leads, for each 
lattice site, to motions along the coordinate axes. For 
simplicity, these motions are assumed to be mutually 
independent and we focus on displacements along the 
y-axis along which the composite is strained. Thus the 
strain values, e (see Equation 2), are for elongations 
along the y-axis and they represent either an axial 
tensile strain (for bonds along the y-axis) or a shear 
strain (for bonds along the transverse x- and z-axes). 
Similarly, K in Equation 2 denotes a tensile modulus 
(Era o r  El) or a shear modulus ( G  m o r  Gr). 

Application of the model described above requires 
a detailed knowledge of the values for the activation 
energies, U, and activation volumes, fl (Equation 1), 
for the various types of  bonds. These sets of  values are 
rather difficult to determine experimentally. At any 
rate, a quantitative description of the mechanical 
properties of  a particular composite is beyond the 

scope of  the present work. Therefore, for simplicity, 
we assume a hypothetical situation in which both the 
fibre and the matrix are isotropic so that U and fl are 
the same for all the bonds belonging to the same 
component.  Values of  U and fl for a given component  
(matrix or fibre) are then selected so as to give reason- 
able values for its tenacity and elongation at break. 
Typical parameter  values are as follows. 

Testing conditions: the temperature is set equal to 
23 ~ C and the rate of  elongation = 1 min-1. 

Fibre: we choose U = 50 k cal mol 1, fl = (0.331 nm) 3 
and Ef = 80GPa.  The fibre is assumed to have an 
infinite molecular weight and to be therefore defect- 
free (cf. [8, 9]). The above parameter  values lead (at 
the selected testing conditions) to an elongation at 
break around 6% and a tenacity of  5.6 GPa. Poisson's 
ratio for the fibre is set equal to vr = 0.25 so that 
Gf -= 26GPa.  

Matrix: we take U = 29 k cal tool- l ,  fl = (0.49 nm) 3 
and E m = 3.3GPa. This gives an elongation and 
tenacity at break of 17% and 0.56 GPa,  respectively. 
Taking Vm = 0.50 for the matrix leads to G m = 

1.1 GPa. 
The above parameter  values thus describe the case 

of  composites made of stiff brittle fibres embedded in 
ductile and soft matrices, a situation which is most  
commonly encountered experimentally. 

3. Results and discussion 
Fig. la shows a series of  stress-strain curves for a 
fibre-reinforced composite with lid = 1, at different 
values of  the fibre volume fraction, vf. The curves f o r  
the pure matrix (vr = O) and for the pure fibre 
(vr = 1) are denoted by dashed lines. Inspection of  the 
curves shows that the additon to the matrix of  stiff 
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Figure 2 Dependence on strain of the fraction of broken matrix (e)  
and fibre (o) bonds. The fraction for a given component (fibre or 
matrix) is in units of the total number of bonds for that component. 
The figure is for a lattice of 19 x 19 x 300 bonds with l id = 20, 
d = 1 and vf = 0.3. The corresponding stress-strain curve is also 
represented (dashed line) for easy reference. 

fibre particulates produces two effects: an increase in 
modulus and a decrease in the strain at break. These 
two effects have opposing influences on the tenacity 
and can lead, at low vr < 0.4, to a composite strength 
lower than that for the pure matrix. Further investi- 
gation shows that fracture of the composite is initiated 
through tensile failure of the matrix near fibre ends. 
As lid = 1, the concentration of those fibre ends is 
high and the local cracks therefore quickly merge 
transversely from the direction of applied load. Cata- 
strophic failure of the composite then occurs with no 
breaking of the fibres (except at high vf ~> 0.5). 

The case of fibres with higher aspect ratio (lid = 20) 
is described in Fig. 1 b. Here, each stress-strain curve 
shows the presence of two distinct regions charac- 
terized by different moduli. We note that similar 
curves have been obtained experimentally by Curtis 
et al. [12] for a polyamide thermoplastic reinforced 
with glass and carbon fibres. The first region in Fig. lb 
exhibits features that closely resemble those observed 
for l/d = 1 (see above). Inspection of the computer 
results indeed reveals that, as for the case of particu- 
lates, termination of that first region occurs through 
tensile failure of the matrix at fibre ends. Also, as in 
Fig. l a, that termination is seen to occur at a strain 
value which decreases with vr because the higher vf, 
the higher the concentration of fibre ends. However, in 
contrast to the case of Fig. 1 a, growing matrix cracks 
at fibre ends are quickly blunted by neighbouring 
fibres and no catastrophic failure occurs. Further 
straining of the composite then occurs at a lower 
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modulus which is characteristic of the second region 
of the stress-strain curves in Fig. lb. A detailed 
analysis of the computer results for that region (see 
Fig. 2) reveals further growth of those local matrix 
cracks and a gradual transfer of load to the neigh- 
bouring fibres. (Note that the modulus does not 
decrease appreciably within that second region, even 
though the matrix shows a continuous degradation 
(see Fig. 2). The reason for that constancy in modulus 
is the gradually increasing role of the fibres which are 
much stiffer than the surrounding matrix. That con- 
stancy is at variance with the steady decrease in 
modulus observed experimentally by Curtis et aI. [12]. 
The reason for that discrepancy could be due to the 
fact that the fibres in [12] were not oriented so that 
their stiffness along the tensile axis is rather low.) 
Catastrophic failure of the composite then occurs 
when the stress supported by the fibres exceeds their 
maximum tensile strength. Note that the strain at 
break decreases with vr, in accordance with the experi- 
mental data of Curtis et al. [12]. 

The discussion presented above is more clearly 
exemplified by Fig. 2 which depicts the dependence on 
strain of the fraction of broken matrix and fibre 
bonds for lid = 20 and vf = 0.30. The corresponding 
stress-strain curve is also represented (dashed line) for 
easy reference. The figure shows a progressive matrix 
failure, starting near 4 to 5% strain at which the first 
region terminates. For the present case of perfect 
adhesion between fibre and matrix, that failure occurs 
only in tension with no fibre debonding being observed. 
Fibre fracture is initiated near 8% strain, leading to 
catastrophic failure of the composite. The results of 
Fig. 2 bear a striking resemblance to the acoustic 
emission results of Curtis et al. [12]. The latter indeed 
show an acoustic output commencing at the end of the 
first region and accelerating rapidly with increasing 
composite strain. That output has been attributed to 
matrix cracking at fibre ends with ~ fibre breakage 
occurring only near catastrophic failure of the sample 
[12]. 

The various modes of fracture for l/d = 20, dis- 
cussed above, are further illustrated in Fig. 3. The 
figure show two successive deformation schemes 
obtained in a longitudinal x - y  plane passing through 
the centre of the lattice. Fig. 3a, typical of the end of 
the first region in the stress-strain curve, clearly illus- 
trates the tensile failure of the matrix near the fibre 
ends. Further straining of the composite leads to 
transverse propagation of those matrix cracks with 
eventual fibre breaking near catastrophic failure 
(Fig. 3b). These figures should be contrasted to those 
obtained for the case of particulate-reinforced com- 
posites (l/d = 1, Figs 3c, d). Here, the local matrix 
cracks appearing at "fibre" ends (Fig. 3c) easily 
merge transversely and catastrophic failure of the 
composite occurs with no "fibre" fracture being 
observed (Fig. 3d). 

We now turn to a study of the dependence of com- 
posite strength on vf and lid. Previous phenomeno- 
logical theories (see, for example, [2]) lead to the 
prediction that, at very small vr, the strength, a, 
should decrease as a = am(l - v0 (see dotted line b 



(a; (b) 

Ic) (d) 

Figure 3(a), (b) Typical deformat ion schemes obtained for I/d = 20 (d = 3 and v r = 0.46) at two different strain values, s: (a) s = 0.035 
(end of  first region in fig. Ib), (b) s = 0.075 (near catastrophic failure). Perfect adhesion at the f ibre-matr ix interface is assumed. The figure 
is for a longitudinal x-y plane passing th rough  the centre of  the lattice. The x and y axes are not  to scale. (c), (d) Typical deformat ion schemes 
obtained for lid = 1 (d = 7 and vf = 0.37) at two different strain values, e: (c) e = 0.065, (d) e = 0.085 (near catastrophic failure). Perfect 
adhesion at the f ibre-matrix interface is assumed. The figure is for a longitudinal x-y plane passing th rough  the centre of  the lattice. The 
x and y axes are not  to scale. 
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Figure 4 Dependence of  tensile strength on fibre volume 

fraction, vf. ( e )  lid = 20 (d = I); (A) lid = 20 (d = 3); 
(o) lid = 1 (d = 3); (zx) lid = I ( d  = 7). The dotted lines 
a and b extending across the g raph  represent the following 
equations: a, cr = crfvf + or*(1 - vf); b, ~ = ~m(1 -- V~) 
in which ~r = 5.6GPa,  or* = 0 .23GPa and ~m = 
0.56 GPa. 
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Figure 6 Dependence of  composite strength on filler 
volume fraction, vr, for the case of  spherical particles with 
no adhesion to the matrix�9 The composite strength is in 
units of  the strength of  the pure matrix�9 (o )  Experimental  
data for six composite materials taken f rom [16]. Solid 
symbols connected by the cont inuous  line are predictions 
of  the model for lid = 1 with ( e )  d = 5, (A) d = 7 and 
(11) d = 9. 
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Figure 7 Stress-strain curves for a fibre-reinforced composite with poor,adhesion, at different values of the fibre volume fraction, v r. The 
adhesion factor was set equal to 0. I. (a) lid = 1 with d = 7 lattice units; (b) lid = 20 with d = 1 lattice unit. The dashed lines indicate the 
limiting cases of pure fibre (vf = 1) and pure matrix (vf = 0). 

in Fig.  4) in which a ~ ( =  0.56 GPa)  is the s t rength  o f  
the pure  mat r ix .  A t  h igher  vf, a c rossover  is expected 
to a = arvr + a*(1 - vr) (see do t t ed  line a in Fig.  4) 

w h e r e  af ( =  5.6 G P a )  is the s t rength  o f  the  pure  fibre, 
whereas  a* ( =  0.23 G P a )  is the stress on the mat r ix  at  
the b reak ing  s t ra in  o f  the fibre. These  predic t ions ,  
however ,  are  val id  only for  the case o f  con t inuous  
fibres assuming  an i sos t ra in  s i tua t ion  wi thin  the com- 
posi te .  The  case o f  d i scon t inuous  fibres is much  more  
complex  because  it requires  a deta i led  knowledge  o f  

the stress concen t ra t ion  near  fibre ends.  The p r o b l e m  
is thus ideal ly  sui ted for  analysis  with the help o f  our  
app roach .  Our  results for  lid = 20 (solid symbols)  
and  lid = 1 (open symbols)  are presented  in Fig.  4 
and  c o m p a r e d  to the pred ic t ions  o f  lines a and  b. The  
da t a  fo l low two different  regimes,  depend ing  on  the 
fibre vo lume fract ion.  A t  low vf, ou r  s t rength  values 
fol low line b, therefore  ind ica t ing  tha t  the fibres p lay  
no m a j o r  role and  the s t rength is ma t r ix  domina ted .  
A t  a cri t ical  vr whose value decreases with l/d, a second 
regime appea r s  in which the tenaci ty  becomes  fibre 
domina ted .  Tenac i ty  now increases with vr and  the 
da t a  fol low a series o f  lines all o r ig ina t ing  a t  am* = 
0.23 G P a  and roughly  l inear  with a slope increas ing 
with lid. These lines are very s imilar  to line a, which 
represents  their  l imit ing behav iou r  for lid = oe. No te  
also tha t  all our  s t rength values for  a given lid are  

independen t  o f  our  choice o f  the value (in lat t ice units) 
for the fibre d iameter .  This stresses confidence tha t  
our  results are independen t  o f  mode l  details .  

The ac tua l  values o f  the slopes in the second regime 
in Fig.  4 are de te rmined  by  the ra t io  of  lid over  the 

0.015 

O3 
a 
Z 
O 
nl 

x 
n" 
I-- ,,,r 

Z 
LU 
V 
o 
n" 
m 
u .  

o 

Z 
O 

O ,,r 
n- 
U_ 

0.010 

0 0 0 5  

MATRIX TENSION 

MATRIX SHEAR 

( 

/ / /  /~1 O 
0 0.02 0.08 

/ 
/ / 

I~/////I / 
0.04 0.06 
STRAIN 

n 

(5  
v 

03 

2 03 
UJ 
re" 

CO 
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critical aspect ratio which is required for an efficient 
transfer of load from the matrix to the fibres [2, 6, 7]. 
That critical aspect ratio, lo/d, is known to be a strong 
function of the ratio of elastic moduli between fibre 
and matrix [6]. Fig. 5 shows that the Ic/d also depends 
on the fibre volume fraction, vr. In the limit vr = 0, we 
recover the result lc/d = 37 obtained in [6,7] for the 
case of a single fibre embedded in an infinitely large 
matrix with Ef/Em = 24. As vf is increased from 0 to 
0.5, that value of lc/d stays rather constant and shows 
only a small drop from 37 to 30. At higher fibre 
content, however, lc/d decreases sharply with fibre 
volume fraction towards the limiting value 0, expected 
at vf = 1. That sharp decrease explains the faster 
than linear increase in strength with vf observed in 
Fig. 4 for v > 0.5. The figure also shows that, the 
lower l/d, the faster and the more pronounced the 
non-linear increase in strength. Of course, at vf = 1, 
all the curves in Fig. 4 are expected to converge towards 
the limiting value af = 5.6GPa for the pure fibre. 
Note, finally, that our dependence of lo/d on vr in 
Fig. 5 is much weaker than that predicted by Rosen 
[13] using the shear analysis method. 

We now turn to a detailed study of the effect of 
adhesion at the fibre-matrix interface. Adhesion is 
one of the key factors determining the mechanical 
properties of fibre-reinforced composites. Previous 
theoretical models, however, tend to neglect the 
influence of the boundary layer of poor bonding 
developed between fibre and matrix during preparation 
of the composite. The importance of that so-called 
"mesophase" layer has been recognized recently [14] 
and its thickness has been estimated to be in the range 
30 to 240 nm. Varying the adhesion in the model was 
realized by breaking bonds at the fibre-matrix inter- 
face with probability (1-adhesion factor). Unless 
otherwise specified, the interface of poor adhesion was 
assumed to have a thickness of one lattice unit. 

The dependence of composite strength on vr for the 
case of spherical inclusions (l/d = 1) with no adhesion 
to the matrix is studied in Fig. 6. The composite 
strength is in units of the strength of the pure matrix. 
Our results (continuous line connecting the filled-in 
symbols) show a sharp decrease in strength with an 
increase in filler content. That decrease follows the 
often conjectured relationship [15] a ~ (1 - ctv 2/3) 
with ~ = 1.21. Note that, again, our strength values 
are found to be rather independent of the particu- 
lar value chosen for the particle diameter, d. Also 
represented in Fig. 6 are experimental data reported 
by Nicolais and Mashelkar [16] for six composite 
materials. A very good agreement with the theoretical 
predictions is found. 

The effect of poor adhesion on the stress-strain 
curves for fibre-reinforced composites is studied in 
Fig. 7. The figure is qualitatively similar to Fig. 1 
obtained for the case of good adhesion. Thus, again, 
the stress-strain curves for lid = 20 (Fig. 7b) show 
the presence of two distinct regimes. Further investi- 
gation also shows that the mode of fracture for lid = 
1 is very similar to that observed for the case of good 
adhesion. Thus, cracks form in the matrix near fibre 
ends and easily propagate transversely, leading to 
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catastrophic failure of the sample. The mode of failure 
for the case of long fibres (lid = 20), however, strongly 
depends on the quality of adhesion at the fibre/matrix 
interface. A detailed analysis of the stress-strain 
curves in Fig. 7b reveals that the transition from the 
first to the second region is due to matrix cracking 
near fibre ends, as in Fig. lb. However, in contrast to 
the case of good adhesion, transverse propagation of 
those cracks through tensile failure of the fibres does 
not occur. Rather, shear failure of the weak fibre/ 
matrix interface is observed, leading to progressive 
fibre debonding. These results are clearly demon- 
strated in Fig. 8 for vr = 0.3. Tensile fracture of the 
matrix near fibre ends starts near 2% strain and con- 
tinues well into the second regime. Near 5% strain, the 
matrix starts to fail in shear, leading to a progressive 
debonding of the fibres. This initiates catastrophic 
failure of the composite, which occurs near 7.5% 
strain. 

Two successive deformation schemes obtained for 
lid = 20 with poor adhesion are represented in 
Figs 9a and b. At the end of the first region in the 
stress-strain curve, tensile failure of the matrix near 
fibre ends is the only mode of fracture being observed 
(Fig. 9a). Note the high concentration of stress build- 
ing up at the fibre-matrix interface. Near catastrophic 
failure (Fig. 9b), the matrix starts to fail in shear and 
progressive debonding of the fibres is seen to occur. 
The case of particulates with poor adhesion is described 
in Figs 9c and d. Again, composite fracture is initiated 
through matrix failure at "fibre" ends (Fig. 9c). 
Because the concentration of "fibre" ends is high, 
these matrix cracks easily merge transversely, leading 
to catastrophic failure (Fig. 9c). No debonding, how- 
ever, is seen to occur along the direction of applied 
load. 

Our results for the dependence of composite strength 
on vr and lid for the case of poor adhesion are 
represented in Fig. 10. The notation and symbols are 
the same as for Fig. 4. At small vr, our strength values 
decrease with fibre volume fraction therefore indicating 
that the mechanical properties of the composite are 
essentially matrix dominated. However, in contrast to 
the case of good adhesion (see Fig. 4), the data fall well 
below line b. Rather, they follow the dashed line c, 
obtained from Fig. 6, for the case of particulates with 
no adhesion to the matrix. At higher vf, the tenacity 
becomes fibre dominated and increases with fibre 
volume fraction. For not too high vf < 0.5, the data 
follow a series of straight lines originating at 
a* = 0.23 GPa, as in the case of good adhesion (see 
previous Fig. 4). Note, however, that the slopes of 
those lines are much lower than those observed in 
Fig. 4. At vr > 0.5, the critical length strongly decreases 
with fibre volume fraction (see Fig. 5 in that connec- 
tion) and this results in a dramatic upsurge in tenacity. 

Fig. 11 shows the dependence of composite strength 
on adhesion for an aspect ratio lid = 20. The two sets 
of data are for different fibre volume fractions. Inspec- 
tion of the figure shows that, the higher vr, the more 
pronounced is the decrease in strength with adhesion. 
That decrease is seen to be particularly significant 
when the adhesion factor falls below 0.3 to 0.4. This 



(Q) (b) 

(c) (a) 

Figure 9(a), (b) Typical deformat ion schemes obtained for lid = 20 (d = 3 and v r = 0.46) at two different strain values, e: (a) s = 0.025 
(end of  first region in Fig. 7b), (b) e = 0.075 (near catastrophic failure). An adhesion factor equal to 0.1 is assumed. The figure is for a 
longitudinal x-y  plane passing th rough  the centre of  the lattice. The x and y axes are no t  to scale. (c), (d) Typical deformation schemes 
obtained for lid = 1 (d = 7 and vf = 0.37) at two different strain values, 5: (c) s = 0.08, (d) s = 0.12 (near catastrophic failure). An 
adhesion factor factor equal to 0.1 is assumed. The figure is for a longitudinal x-y  plane passing th rough  the centre of  the lattice. The x and 

y axes are not  on scale, 

4651 



1.0 
(3. 
(5 

-v 
I.-- 
(5 
z 
uJ 
rv 
I-- 
on 0.5 

. ' i  . . ~ l /~ :2o  
D/ " ' ' ' ' " - . .  

~::, ' . . . .  

~ { I d = i  ....... 
C " ' . . .  b 

: a  

/ 

0.5 
FIBRE VOLUME FRACTION ~ v| 

1.0 

result is in line with our previous observation (see 
[6, 7]) of  a sharp increase in fibre critical length below 
30% adhesion. 

4. Conclusions 
We have presented a new model for the description of 
the effects of adhesion and fibre characteristics on the 
strength of fibre-reinforced composites. The approach 
is microscopic in nature and allows detailed study of  
the interplay of fibre and matrix fracture during 
composite failure. The model also explicitly takes into 
account the importance of  stress concentration near 
fibre ends and the redistribution of stress after local 
matrix or fibre failure. 

A few comments should be devoted to the size of the 
"test sample" used in the calculations. As was men- 
tioned earlier, a sample typically comprises 35 x 
35 x 200 lattice sites. The fibre diameter is usually of 
the order of 3 to 5 lattice units which, for a 10 #m fibre, 
leads to a 2 to 3 #m distance between sites. From the 
above considerations, our sample thickness and length 
are of the order of 100 and 600 #m, respectively. The 

Figure 10 Dependence  of  tensile s t rength  on  fibre vo lume  

fraction,  vf, for the case of  p o o r  adhes ion  (adhes ion  

factor = O.1).(e)l/d = 20(d = 1);(A)l/d = 20(d = 3); 
(o) l/d= 1 (d = 3); (zx)/]d = I (d = 7). For details on 
the dotted lines a and b, see legend to Fig. 4. The dashed 
line c indicates the prediction of the continuous curve fitted 
to our data in Fig. 6. 

1.5 

obvious question is whether the results of our calcu- 
lations are affected by specimen size. It is well-known 
indeed, that composite strength is strongly affected by 
sample size as well as by fibre diameter, d (at constant 
I/d) [17]. As was mentioned in Section 3, however, our 
results are, as far as we could determine, independent 
of sample size and of the particular value chosen for 
d. This is not the case experimentally, because failure 
of actual composites is strongly dominated by gross 
flaws. In the absence of such flaws, as in the present 
model, no such effect is expected. 

For simplicity, the present work focuses on composite 
deformation along the tensile y-axis and neglects 
lateral motions in the transverse x- and z-directions. 
This is an oversimplification without which the com- 
puter time required for the calculations would be 
prohibitively large. Thus, the model proposed may be 
too simple to describe fully the fracture behaviour of 
fibre-reinforced composites but, it brings out very 
clearly essential points like the role of fibre aspect 
ratio, fibre volume fraction and fibre/matrix adhesion. 
The present approach should be also very instructive 
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Figure 11 Dependence  of  tensile s t rength  on adhes ion  

factor  a t  two different fibre vo lume  fract ions.  The  figure is 
for lid = 20 wi th  d = 3 lat t ice units.  (O) vf = 0.43; ( e )  
vf = 0.141. 



in identifying additional key issues to be addressed in 
more advanced models. 
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